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Abstract

The ability to predict the failure of secondary batteries is important. However, when determinism is not used to make the predictions
because the complexity of the problem, difficult questions arise. Data analysts must always determine how much information is available
in a given database and how much information can be squeezed from the database. A philosophical question is frequently posed: How
long into the future can we predict based on past information? For the prediction of battery cycling life this question can be formulated as:

Ž .How long must a battery or cell be tested to predict when it will fail? The answer to this type of question depends on how many
variables define the problem, how much we know of the problem, how effective we are at squeezing information from the database, and
how much knowledge and reliable data we have available to build a predictive model. The quality of the model will be measured by its
ability to predict the future behavior of the system. The prediction of cycling life of batteries has been until now an impossible task. We
are convinced that this is in part because the problem is very difficult, and in part, because the information available in databases has not
been manipulated enough to produce a reliable predictive model. Models based on similar techniques are expected to have similar

Ž .predictive capabilities. The methodology used in this project is now being used on an extensive database thousand of hours for NiCd
Ž . Ž .batteries NASA Goddard Space Flight Center data , and on a complete database many variables are being controlled and measured for

Lirpolymer batteries generated at the Battery Laboratory at Penn State. q 1998 Elsevier Science S.A. All rights reserved.
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1. Introduction

ŽSome of the secondary batteries on the market e.g.,
.lithium-based are promising because they offer a high-

power density, and great mechanical flexibility. However,
not all of the batteries built under the same specifications
and with the same methodology will reach the expected
long life. Until now, the reasons why these promising
lithium–polymer technologies do not reach that desired

Ž .long life 41000 cycles are not well understood nor do
we know why the life of certain batteries belonging to

Ž .more long-life family systems lithium–ion are shortened
while other batteries of the same family last a long time.

) Corresponding address. mumesm@engr.psu.edu.

It would be of great interest especially for low-weight
applications to be able to predict the performance life of a
battery by running a short series of tests on it. One such
application is space flight. It is important to minimize the
weight of the launch vehicle. For these applications, tests

Žare run on many cells one or several cells may form a
.battery system , and statistics are used to calculate how

many cells will be included in a flight, using information
on the number of cells needed to supply the required
power, the probability that cells will fail, and a safety
factor of extra cells. These extra cells are excess weight for
the launch. If a method could be developed to determine
whether cells will fail by running a short series of tests on
individual batteries, the weight and volume of the battery
pack could be reduced.

It is our intention in this paper to present and discuss a
methodology aimed at squeezing information from a
database. The model learned from a small database con-
taining 2 h of cycling life of lithium–ion secondary batter-
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Žies. The model used short-term information 60 and 10
. Ž .min to predict longer term information 2 h for which

measured data exist; that actual data was used to assess the
predictive performance of the model. The model was then

Ž .used to explore the system’s longer-term response 10 h
for which measured data was not available. Extrapolation

Ž .of knowledge expectations based on experience was used
to assess the system performance.

Two types of currentrtime patterns were imposed on a
Ž .battery 10 cells and voltagertime response patterns were

measured. The patterns were imposed at three different
temperatures. This research effort identified those variables
collected during life testing of the battery system that
contributed the most to predicting the performance of the
battery in the future. The prediction model used a pattern

Ž .recognition artificial neural network ANN . Data were
Ž .presented to the net as inputs current pattern and outputs

Ž .voltage pattern during the net training. The way the data
are represented is very important and defines the net’s
learning speed. In general, we can state that to squeeze
information from the data, it is very important to represent
the data in various ways. For example, we learn music by
reading it but also by expressing it through a musical

Ž .instrument transformation . Data transformation and data
representation are key issues in the learning process and in
squeezing information from the data. In this paper, we
discuss the advantages and disadvantages of three different
data representations.

The objective of this paper is to use artificial neural
Ž .networks, specifically feed-forward backpropagation FBP

networks, to explore the possibility of predicting cycling
life failure; based only on short-term data. The research
work is based on certain predictive capabilities shown by

w xartificial neural networks 1 .
The predictive capabilities of FBP nets are presented

and discussed. Three data representations of the inputs and
outputs used to train the network are discussed: an ampli-

Ž .tude-time representation data representation one , a fre-
quency representation using a discrete Fourier transform
Ž .data representation two , and a wavelet coefficient repre-
sentation using wavelets to compress the current and volt-

Ž .age signals data representation three . In this paper we
also present an analysis that aims to categorize the vari-
ables measured during battery testing in order to determine
their relative importance in predicting the cell cycling life.

2. Neural networks: An overview

Artificial neural networks are a mathematical tool with
excellent capabilities for pattern matching, recognition,
and classification. ANNs are inspired by the biological
behavior of neurons. The fundamental building blocks of

Ž .biological neural nervous systems are cells called neu-

rons. The neurons are represented by a summation and a
transfer function. An artificial neural network may also
consist of layers of interconnected neurons. A network is
composed of one output layer, one input layer, and one to
three hidden layers. Signals travel from the input layer,
through the hidden layers, to the output layer. Only two
hidden layers are usually needed to learn non-linear trans-
formations. Each hidden layer in a network adds one
degree of non-linearity.

There are two main types of nets: supervised and
non-supervised. Supervised nets learn by examples, and
during the training process the weights or connections

Žin-between neurons change with time the transfer func-
.tions remain practically constant so that the net as a whole

adapts to reach an answer close to the desired output
Žpresented as a single value, vector, or matrix of informa-

.tion given an input vector. Once the net learns ‘a job’ the
weights remain constant. During the learning process, the

Ž .net establishes relationships highly non-linear between
the inputs and the outputs; once the net is trained, that
categorization of the inputs by weight-importance or ‘con-
tribution to the learning process’ can be used to explore
the importance of the input variables in reproducing the
desired output.

For this research a supervised type of learning was
chosen; the input and output data were run through the net
during training. The learning was accelerated with addi-
tional information in the form of input series calculated

Ž .from the input data functional links . In this work we
explored several types of supervised net designs; the re-
sults of only one of them are reported.

Ž .Feed-forward backpropagation FBP networks are
Ž .composed of multiple layers of processing elements PEs

that are represented by transfer functions such as sigmoids.
The network consists of an input layer, and output layer
and any number of hidden layers that give the network the
ability to solve non-linear problems. No more than two
hidden layers are usually necessary to learn a difficult task.
The input layer sends all of the input values through
weighted connections to the first hidden layer, where these
inputs are summed and the processing elements use the
transfer function to produce an output. This output is sent
through weighted connections to the next hidden layer,
where the PEs similarly produce an output, which is finally
sent to the output layer. The network undergoes supervised
training, which means that the desired output has to be
known for each given input, and the network adjusts its
weights to produce an output close to the desired output.
The FBP network uses an error gradient descent learning
rule to properly adjust its weights. The error between the
network output and the desired output is expressed in
terms of the network weights, so the gradient of the error
with respect to the weights can be found. The weights
change by descending this error surface along the gradient.

For this project, a commercially available neural net-
work building package was used to design and create the
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Ž .FBP networks used. The hyperbolic tangent tanH was
used as the transfer function. The Extended Delta–Bar-De-

Ž .lta DBD net was used. The DBD net adds a momentum
term to the error gradient descent learning rule to avoid the
net response getting trapped in local minima of the error
surface. The networks had two hidden layers: the first had
twice as many elements as the input layer, and the second
had the same number of elements as the input layer. The
number of elements in the input and output layers was
determined by the size of the input and output vectors in
the data representation being used.

3. Lithium–ion battery tests

Battery test data were received from tests run on
lithium–ion secondary batteries by SAFT America under
contract to NASA Goddard Space Flight Center. These
tests were conducted to evaluate lithium–ion secondary

Ž .batteries as a power source for the pistol grip tool PGT .
This is a tool for tightening and loosening fasteners when
repairing satellites in orbit, such as the Hubble Space
Telescope. The PGT requires a minimum voltage of 28 V
to operate, so a drop below this voltage would be consid-
ered a failure. A series of tests were run on a 10-cell
lithium–ion battery using two different current discharge
profiles and three different temperatures. The two current
discharge profiles were a typical current discharge profile
Ž .Fig. 1—profile 1 , and a worst-case discharge profile
Ž .Fig. 2—profile 2 . The typical current discharge profile
has current spikes ranging from 2 to 8 A in groups of four
to simulate the high torque needed to initially loosen a
fastener, and longer current discharges at 1 and 1.5 A to
simulate the removal or tightening of a fastener. The
worst-case current discharge profile has current spikes
ranging from 4 to 10 A and an extended current discharge

plateau at 2.5 A to simulate the deployment of a solar
array. These discharge profiles were applied to the battery
in the order profile 1, then profile 2, at temperatures of 20,
0, and 408C, and the running time, current, output voltage,
and internal temperature of the battery were measured.
Between each test, the battery was recharged to full capa-
city. These tests, including the recharge cycles, were la-
beled alphabetically. The data received for the discharged

Ž . Žcycles was from test B profile 1, 208C , test D profile 2,
. Ž . Ž .208C , test H profile 2, 08C , and test J profile 1, 408C .

4. Data representation one

The format in which the data are presented to an FBP
network is important in determining whether the network
learns effectively. In this case, the data contained a record
of the current, running time, temperature, and resulting
voltage output of the battery at discrete moments in time.
Merely presenting a datum point of the current, running
time, and temperature of the battery to the network would
not be sufficient for the network to learn the relationship
between these few inputs and the output voltage. Among
variables that impact cell behavior other than the instanta-
neous current and temperature are the previous currents
and the previous ‘over a threshold’ current value that the
cells experience. Those variables affect the cell perfor-
mance at any given moment. In order to train the net
effectively, information about these variables also had to
be presented to the network.

Ž .Four sets of data from the tests A, D, H, and J
performed on secondary lithium–ion batteries were used to
train a backpropagation network. For each battery test, the
current, time step, running time, ampere-hours, tempera-
ture, and resulting voltage output for a 10-cell battery stack
were recorded.

Fig. 1. Discharge profile 1: Typical current discharge profile. Test B at 208C, and test J at 408C.



( )M. Urquidi-Macdonald, N.A. BombergerrJournal of Power Sources 74 1998 87–9890

Fig. 2. Discharge profile 2: Worst-case current discharge profile. Test D at 208C, and test H at 08C.

Data representation one contains the following inputs:
Ž . Ž . Ž .current I , time step D t , time from start of the test t ,

< < Ž .D I, D I , ampere-hours, ampere-hours resets at 0 A ,
Ž . < < Ž . Ž .Ý D I , Ý D I , temperature T , log T , a counter of the

current peaks in the ranges 4–6 A, 6–8 A, and 8–10 A,
and a current history vector recording the time spent in the
current ranges 0–1, 1–4, 4–8, and 8–10 A. Functional

n 1r n Žlinks of the form x and x where x represents any of
.the variables described above and ns2, 3, 4 were also

included. These functional links add information to the
network and help it to obtain more efficiently the relation-

w xship between inputs and outputs 2 .
The composite training file contained 54 inputs and 1

output. Each input vector corresponded to a single current
value applied to the battery and a single voltage response

Ž .measured 1416 data points were measured in a 2-h test .
Ž .Sections of these files also called tests B, D, H, and J

were used to train a backpropagation network with a first

hidden layer of 108 processing elements and a second
hidden layer of 54 processing elements.

5. Results of data representation one

The network was trained using several representations
of current and temperature as described above, and voltage
was the output. We had arbitrarily chosen to train the net
using the first 60 min of tests B and D, and 10 min of tests
H and J. Tests B and D consist of tests run with discharge
profiles 1 and 2, respectively, both at 208C. Tests H and J
consist of tests run with discharge profiles 2 and 1, at 0
and 408C, respectively. The network had to be trained with

Ž .both profiles tests B and D so that the network could
learn the relationship between the different current dis-
charge profiles and the output voltage; and the temperature
dependence from tests B, H, and J. 10 min time patterns

Ž . Ž .Fig. 3. Net voltage response predictions on 2 h of test H light gray compared to measured cell voltage response black . The input current pattern is
Ž .shown at the bottom of the graphic dark gray, bottom . The network was trained with the first 60 min of tests B and D, and first 10 min of tests H and J

Ž .data representation one .
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Ž . Ž .Fig. 4. Net voltage response predictions on 2 h of test J light gray compared to measured cell voltage response black . The input current pattern is shown
Ž . Žat the bottom of the graphic dark gray, bottom . The network was trained with the first 60 min of tests B and D, and the first 10 min of tests H and J data

.representation one .

were necessary for the net to learn the dependency in
profiles 1 and 2, because the 2.5 A current plateau was

Ž .imposed on the battery Fig. 2 in the first hour.
ŽThis trained network was tested using the full test H 2

.h results shown in Fig. 3. The results for the network
Ž .tested on full test J 2 h are shown in Fig. 4. The net

predictions were compared to the measured voltage re-
sponse. In both cases, the network output voltage con-
formed very closely to the actual output voltage.

The net had to be trained with portions of tests H and J
Ž .in order to learn the temperature other than 208C depen-

dence of the voltage output. We also tried training the net
Žusing the whole 120 min of only test B profile 1 and

.208C ; we then test the net by using the 120 min of test H
Ž .profile 2, at 08C . The results are shown in Fig. 5. The net
that was trained with this representation using only one

Ž . Žtemperature 208C and one applied current profile profile

.1 did not learn to differentiate well between different
input profiles nor different temperatures. When the net was
tested with a different profile and temperature, it had
problems identifying the proper response. The net did not
perform well in describing the response of the cells when a
constant 2.5 A current was applied over a longer period of

Žtime. The net did not predict the correct response deep
.voltage spikes to the deep current spikes corresponding to

the cells’ response at low temperature, but instead the net
Žprediction response was more modest corresponding to

.what the net learned at 208C .
To perform well using this representation, the net must

be trained using ‘best’ and ‘worst’ profiles and ‘best’ and
‘worst’ environmental conditions. The net has no problem
interpolating a given response, but it underestimates the
extrapolated cell behavior. The results appear to indicate
that under this representation, to extrapolate the cell behav-

Ž . Ž .Fig. 5. Net voltage response predictions on 2 h of test H at 08C, and profile 2- light gray compared to measured cell voltage response black . The input
Ž . Žcurrent pattern is shown at the bottom of the graphic dark gray, bottom . The network was trained with the 120 min of tests test B data representation one

.and 208C .
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ior properly, it is necessary to have some measured infor-
mation about the expected response of the cell to parame-

Žters that impact the cell cycling life such as temperature
.and type of input current pattern applied to the cells . If the

inputs used to train the net change from an example to the
other and do not remain constants, the net will learn the
trends and to extrapolate behaviors properly.

A network was also trained with all the data available
from all four tests, then tested with extended time input
patterns to get an idea of the long-term voltage perfor-
mance of the cell. The hypothetical current input pattern
used for training the net was constructed by placing input
of tests B, D, H, and J in series and making a cumulative,
continuous input, which represented a simulated 10-h bat-
tery test without recharging. The net was tested in a

Žhypothetical pattern similar to test B pattern 1, ‘typical
.case’—the testing pattern was BBBB , but using a temper-

ature sequence of 208C for 5 h, followed by 2 h at 08C,
and finally followed by 3 h at 408C. The net voltage
response was expected to have a lower voltage rate at high

Žtemperature than at low temperatures experimentally ob-
w x.served, but not shown here 3 . The depth of the spikes of

the voltage signature was expected to be smaller at high
temperatures than at low temperatures. Fig. 6 shows the
input pattern applied to the trained net and the output
voltage pattern predicted by the net. The net indeed pro-
duced lower output voltage spikes at the end of the simu-
lated test corresponding to a temperature of 408C than the

Ž .section between 5 to 7 h corresponding to 08C. The slope
Ž .of the voltage-time response or voltage rate is more
Ž .negative for low temperatures 08C than for higher tem-

Ž .peratures 408C , as expected.
One of the disadvantages of data representation one is

the time required to pre-process the data before training
the net. To avoid this problem, we propose to use as input

to the net a compressed representation of the whole signa-
Ž .ture 2 hour . The problem that we may face in this new

approach is that few hours of data may use a large number
of data points. The following two data representations
consider the use of the 2 h whole signature as input and
the whole voltage signature as output. An identically-sized
signature must be used to train the net and to test it; the net
produces an output voltage response of the same size as
the one used during the net training process.

6. Data representation two

Data representation two was developed by considering
the discrete Fourier transform of the current and voltage
patterns. In this representation, the entire signature of the
current and voltage patterns of a test were transformed to a
series of Fourier coefficients, which contain a smaller
number of Fourier coefficients than the number of data
points used to represent the signature. The Fourier coeffi-

Žcients of the current and voltage as inputs and outputs,
.respectively are presented to the network during training.

To reduce the training time of the network we sought to
use only a few coefficients. Accordingly, the first 16

ŽFourier coefficients representing the signature current or
.voltage were used, resulting in 32 inputs and 32 outputs

Ž .the coefficients have real and imaginary parts . One prob-
lem with using only 16 coefficients was that the first 16
coefficients only roughly approximated the shape of the
current and voltage patterns. For this reason, the network
would not be able to duplicate the detailed measures of
current or voltage. Because we may be interested in chang-
ing the time length of the input signatures, the time of the

Ž .test or time-length of the signature was used along the

Ž . Ž .Fig. 6. Simulated network voltage response black for an input excitation pattern as indicated gray . The net was trained with tests B, D, H, and J
corresponding to profile characteristics 1 and 2 and temperatures 0, 20, and 408C. The results of the net were obtained by inputting a current pattern as test
B but for which the temperature was artificially assigned as 208C for the first 5 h, 08C for the 2 following hours and finally 3 h at 408C.
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temperature as inputs, bringing the total number of inputs
to 34.

The advantage of this representation over the previous
Ž .one representation one is that pre-processing the input

data was fast and easy. A disadvantage was that for the
current and voltage profiles to be represented exactly, we
had to use as many Fourier coefficients as sampled test

Ž .datum points 1416 for 2h . Another disadvantage was that
in addition to recording the size of the input signature
Ž .current , the network should be trained and tested with
Fourier coefficients from samples of the same length. This
way, a Fourier coefficient input or output element will
represent the same frequency for every vector that is
presented to the network. If this is not the case, an input

Ž .neuron or process element, PE will receive Fourier coef-
ficients representing different frequencies, and the network
may not learn the proper relationship between input and
output frequencies.

The equation used to obtain the first 16 Fourier coeffi-
cients was

yj 2p k nNy11
Na k s u n e 1Ž . Ž . Ž .Ý

N ns0

where N is the number of sampled points in the pattern, j
' Ž .is y1 u n is the value of the current or voltage at a

sampled point, and 0FkF15. The equation used to re-
Ž .construct a pattern from the coefficients a k was

j2p k n15
Nu n s a k e 2Ž . Ž . Ž .Ý

ks0

where the reconstructed current or voltage pattern consists
Ž .of the real part of u n . A MatLab program was written to

find the coefficients, and another MatLab program was
written to reconstruct the pattern from the coefficients.

7. Results of data representation two

On the analysis that follows, one has to remember that a
smaller number of Fourier coefficients will not nearly
capture the detailed information on large databases.

To ensure that the Fourier coefficient inputs represented
Žthe same frequency in each input vector, the first 2 h the

.length of the shortest test of each test were used to find
the Fourier coefficients. Then, a network was trained with

Ž . Ž .tests B profile 1, 208C . The trained net Fig. 7 was
Ž .tested using the current pattern of test D profile 2, 208C .

The net was trained on the ‘typical case’ current profile
and tested on a ‘never seen’ input pattern from the ‘worst
case’ current profile test. The 16 Fourier coefficient repre-
sentation was a very poor representation of the real im-
posed current pattern, the Fourier representation lost a
great deal of detail. Although the net predictions were very
close to the Fourier representation of the measured voltage,
the prediction does not have the level of detail required to
determine whether the net ‘sensed’ the impact of the cell
when the worst case current pattern was imposed on the
battery instead of the typical case.

We also trained the net by using the four available files
Ž .B, D, H, and J over a period of 2 h each. The current and
voltage pattern corresponding to each of the files was
represented by 16 Fourier coefficients. Once the net was
trained, and could reproduce the Fourier representation of
the measured voltage pattern signature very closely, we
looked for the weight that had the highest absolute values,
indicating the greatest contribution to the learning. By

Žaveraging the effect of changes in each input the Fourier
.coefficients , the most important inputs—the inputs that

Ž . Ž . Ž .Fig. 7. Fourier voltage black and network voltage gray during a 2-h test. The network was trained with Fourier coefficients 16 on the first 2 h of test B
Ž . Ž .profile 1, 208C ; and tested with test D profile 2, 208C
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Ž .Fig. 8. Relative importance of inputs for network trained with Fourier coefficients 16 , test duration, and temperature. The net used during training was the
first 2 h of tests B, D, H, and J.

contributed the most to the learning—were found. Fig. 8
shows the relative importance for the inputs used to train
this network. Inputs 1 through 16 correspond to the real
current Fourier coefficients, 17 through 32 to the imagi-

Žnary Fourier coefficients, 33 to sample time length in our
. Žexample, 2 h , and 34 to temperature in our example 0,
.20, or 408C . Temperature is by far the most important

input. This result consisted what we anticipated, because
the only difference in the inputs between tests B and J and
tests D and H is the temperature, so it is the sole cause of
the difference in voltage output. Since the tests were
conducted in series with recharge cycles between them, the
resulting capacity loss due to dischargerrecharge cycles
would also have an impact on the voltage output. How-
ever, this effect is expected to be small over 2 h and is
difficult to estimate from the data since the tests were
conducted at different temperatures, so no information
about this capacity loss was included in the input data. The
next most important inputs were the later Fourier coeffi-
cients, which have highest frequencies. This is also logical
because the coefficients with higher frequency correspond
to the sharpest changes in the current patterns and had the
most effect on the voltage output.

The network trained under data representation two was
efficient in approximating the general shape of the Fourier
voltage representation; however, the fine details were lost
when the data is transformed using only 16 Fourier coeffi-
cients.

8. Data representation three

Data representation three was developed using the
wavelet method of data compression. Wavelets represent
an efficient way to compress data without losing too much
information. Wavelets were used to compress 1416 data
points representing the imposed current patterns and mea-
sured voltage patterns. The 1416 data points represented 2
h of real time testing on the battery system under different

Žconditions two applied current signatures, and three tem-

.peratures , as indicated in tests B, D, H, and J. These 1416
data points were compressed to 106 data points for each
test by using a double compression scheme of a sparse

Ž .representation 1r3 of the total signal. The wavelet used
was a discrete biorthogonal exhibiting the property of
linear phase, which is needed for signal and image recon-

w xstruction 4 . The first compression yielded a high fre-
quency signal and a low frequency signal. The low fre-
quency signal contained more information. Accordingly,
the low frequency signal was compressed by forming a

Ž .sparse vector 1 of 3 data points were retained ; the
resulting signal was compressed again resulting in 106
coefficients that were used to represent the original 1416
data points for each of the current or voltage signals from
the four tests.

The signal reconstructed by using the wavelet captured
Žmost of the main features of the original signature cur-

.rentrtime or voltagertime and the same scale by only
using 106 data points instead of 1416, as can be seen for
test D in Fig. 9. Data compression is an important step to
perform before designing a neural network. The number of
neurons in a layer of a neural network depends on the
number of inputs and outputs; accordingly, it is more
efficient to work with an input vector that does not have

Žmany elements network designs containing more than 200
hundred neurons per layer become time-inefficient to oper-

.ate on a PC . A compressed representation of the 2-h
time-length vector reduces considerably the size of the
neural network and, accordingly, the training time.

When compared to a Fourier transform with the same
number of coefficients, wavelet representation gives supe-

Žrior results. The Fourier representation of the pattern cur-
.rent or voltage obtained does not come close to capturing

the information that a wavelet representation captures.

9. Results for data representation three

A network was trained with 106 wavelet coefficients
obtained by compressing the current and voltage signal or
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Ž . Ž .Fig. 9. Original voltage signal from test D black compared to voltage signal produced by wavelet compression using 106 coefficients gray ,
Ž . Ž .representation 106 coefficients of test J profile 1 at 408C .

Ž .pattern 2-h time-length of test B. Then the network was
tested with the 106 wavelet coefficients of current pattern
from tests D, H, and J. Since these tests all occurred for
different lengths of time, they were all trimmed to their
first 2 h, so that respective wavelet coefficients for each
test would refer to the same sections of the test.

Figs. 10–12 show the results for the network tested
with tests J, D, and H, respectively. The initial and final
data points of the file produced severe oscillations on the
wavelet representation because the information was trun-
cated at those two ends; the results of the net for those end
points should be ignored.

Ignoring those end points, Fig. 10 compares the net-
Ž .work prediction gray of the wavelet representation to the

Ž .wavelet representation of the measured voltage black .
The training of the net was performed at 208C under a
current profile ‘typical case’ and tested on a current profile

‘typical case’ but at 408C. The network predictions fol-
lowed the voltage response of the cells to the input current
profile very well. This input current profile was character-
ized by small spikes when the measures were performed at
high temperature. The training contained the wavelet rep-
resentation of the current and voltage signatures measured
at 208C under ‘typical case’ current profile. Therefore, the
only way to explain the capability of the net to predict the
modest response of the cells when the same profile of

Ž .current was applied but at high temperature as expected
is that the net learned the correct function that describes
the temperature effect on the voltage response.

Ž .Fig. 11 compares the network prediction gray of the
compressed wavelet representation and the wavelet repre-

Ž .sentation of the measured voltage black . The training of
the net was performed at 208C under a current profile
‘typical case’ and tested on a current profile ‘worst case’

Ž . Ž . ŽFig. 10. Voltage response network predictions gray compared to the measured voltage response black . The net was trained using test B profile 1 at
. Ž208C with only 106 coefficients extracted using a wavelet representation of the original signal. The net was tested using the wavelet representation 106

. Ž .coefficients of test J profile 1 at 408C .
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Ž . Ž . ŽFig. 11. Voltage response network predictions gray compared to the measured voltage response black . The net was trained using test B profile 1 at
. Ž208C with only 106 coefficients extracted using a wavelet representation of the original signal. The net was tested using the wavelet representation 106

. Ž .coefficients of test D profile 2 at 208C .

also at 208C. The network predictions closely followed the
Ž .voltage negative slopes e.g., 0.7 to 0.9 h, see also Fig. 2

corresponding to the response of the cells to the 2.5 A
plateau current profile; the net overestimated those plateaus,
but it detected and differentiated them from the regular
spikes very easily. The net training contained the wavelet
representation of the current and voltage signatures mea-
sured at 208C under a ‘typical case’ current profile. There-
fore, we explained the capability of the net to predict the
negative slope-plateau voltage responses occurring at times

Žwhen the current plateaus were imposed 2.5 A imposed
.between 0.7 and 0.9 h time sample by assuring that the

net learned the correct function describing the voltage
response of the cell.

Ž .Fig. 12 compares the network prediction gray of the
wavelet representation and the wavelet representation of

Ž .the measured voltage black when the net was trained at
208C under a current profile ‘typical case’ and tested on a

Žcurrent profile ‘worst case’ at 08C lower temperatures
cause cells to respond to current spikes by producing
larger voltage spikes than that obtained at high tempera-

.tures . The network closely predicted the large spikes at
Ž .08C compare Fig. 12 to Fig. 10 ; the spikes were more

pronounced and closely follows the measured voltage re-

Ž . Ž . ŽFig. 12. Voltage response network predictions gray compared to the measured voltage response black . The net was trained using test B profile 1 at
. Ž208C with only 106 coefficients extracted using a wavelet representation of the original signal. The net was tested using the wavelet representation 106

. Ž .coefficients of test H profile 2 at 08C .
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sponse of the cell. Again, these results reaffirm our conclu-
sion advanced above, we believe that the net learned the
correct temperature response of the cell.

10. Conclusions

Data representation one produced good results when
trained with portions of both types of current profiles and
portions of tests at each temperature. The amplitudertime

Ž .representation data representation one required a little
Ž .less than half the number of inputs 54 inputs than the

Žwavelet representation data representation three, 106 in-
.puts . However, the data pre-process is long. Representa-

tion one allowed the net to interpolate temperatures and
patterns very well. But the net trained with representation
one, when only one type of pattern and one temperature
were used during the net training, had some problems

Žextrapolating temperatures and pattern types it underesti-
.mated them . The net showed good capabilities of extrapo-

lating data over a period of 2 h when trained for just
minutes with all the information available about tempera-
ture and pattern. We had only data measured over 2 h to
compare with the net predictions. The net predictions
obtained over 10 h agreed with our expectations based on

w xexperience and data available 3 . The net is capable of
accurately predicting the output voltage with time for the
lithium–ion battery.

Data representation two produced the correct voltage
output for current patterns that it had not been trained with.
However, the level of detail of the 1416 data point with 16
Fourier coefficients was not good enough to confirm that

Žthe net was capable of extrapolating behaviors e.g., to
predict temperatures outside the range of temperatures the

.net was trained with . The Fourier representation does not
capture all the current spikes imposed on the cell, nor the
voltage response spikes of the cell, but only a wave type
response results. The Fourier representation did not require
pre-processing of training data, as compared to data repre-
sentation one. To better reproduce the original pattern,
more Fourier coefficients would have to be used. The
network should not experience any loss in performance in
this case, but this increase in coefficients would mean an
increase in input and output elements of the network.
Another problem encountered with this representation was
that the network could not be trained with part of a test
and then tested with the rest of the same test, because the
network had to be trained with Fourier coefficients from
test segments of a similar length.

Ž .The wavelet representation representation three was
similar to the Fourier representation in the sense that it
required no pre-processing of the data before presentation
to the network, unlike the amplitudertime representation
Ž .representation one . The wavelet coefficient data represen-
tation experienced the same problem as the Fourier repre-
sentation, since the wavelet coefficients also had to be

Žgenerated from test segments of the same length in this
.research we used 2 h , i.e., the net cannot be trained in one

segment of a currentrvoltage signature and tested in an-
other segment of the same signature. However, the wavelet
representation is more closely tuned to the current and
voltage signatures. The spike behavior was easily captured;
accordingly, we could assess the performance of the net
trained with the wavelet representation than the net. Data
representation three accurately reproduced the original
voltage signal with a relatively small number of wavelet
coefficients. Conversely, the discrete Fourier transform

Ž .with 128 coefficients including real and imaginary did
not reproduce more than small waves in response to steep

Ž .voltage drops spikes .
The net trained with the wavelet representation using

only a given pattern and temperature predicted the re-
sponse of the cell at different temperatures and current
patterns imposed on the cells. The wavelet representation

Žhad the best extrapolation capabilities and of course inter-
.polation when compared to the other representations. The

Ž .wavelets data representation data representation three
looks very promising in predicting the cycling failure of
batteries, because it appears to capture the hidden func-
tions describing temperature dependency and effect of long

Ž .current plateaus instead of spikes .
Coming back to the discussion of how many coeffi-

cients to choose to represent a given signature when
Fourier or wavelet coefficients are chosen to represent the
input current pattern, we can anticipate that if all of the
sampling points were used, and more coefficients gener-
ated, greater detail in the signature would be produced, but
at a cost of increasing the number of elements in the neural
network. This increase in the number of elements is not a
great concern, however, because although there may be
many elements in an input vector, there will be only one
input vector for each test used for training.

This result appears to indicate that the response to a
current pattern is a cell property. A well-trained net will
capture that mathematical function that correctly describes
the cell’s response to current patterns and temperature
changes. That net will be able to extrapolate correctly the
cell behaviour.

This paper does not represent an exhaustive study of the
parameters that can affect the cycling life of a battery. We
were limited to using only those parameters that were
monitored during the tests used. If much information on
variables was made available, a similar methodology to the
one described in this paper could be used. For example,
none of these data representations had any input elements
representing the capacity loss due to repeated
rechargerdischarge cycles. This capacity loss is difficult to
measure for such short tests because it is expected to be
very small. Since the tests were conducted at different
temperatures it is difficult to decide whether to attribute
capacity loss to temperature change or repeated cycling.
More extended databases are needed.
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In each one of the cases presented, the network voltage
predictions followed very closely the measured voltage

Ž .pattern when data were available to compare , and we can
conclude that the predictive capabilities of the net trained
with any of the three data representations are, as discussed,
very good, making neural networks a very promising
technique in predicting cycling life of batteries.
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